Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effects of indium concentration on the properties of In-doped ZnO films: Applications to silicon wafer solar cells

Identifieur interne : 000147 ( Main/Repository ); précédent : 000146; suivant : 000148

Effects of indium concentration on the properties of In-doped ZnO films: Applications to silicon wafer solar cells

Auteurs : RBID : Pascal:14-0090026

Descripteurs français

English descriptors

Abstract

In the present paper, high-quality In-doped ZnO (ZnO:In) thin films have been prepared by rf-magnetron sputtering on glass and p-type monocrystalline silicon substrates from an aerogel nanopowder target material. The nanoparticles with the [ln]/[Zn] ratio varying between 0.01 and 0.05 were synthesized by the sol-gel method and the structural properties have been analyzed. The effect of different dopant concentrations on the electrical, optical, structural and morphological properties of the films has been investigated. The obtained ZnO:In films at room temperature are polycrystalline with a hexagonal structure and a highly preferred orientation with the c-axis perpendicular to the substrate. Scanning electron microscopy and atomic force microscopy have been applied for a morphology characterization of the films' cross-section and surface. The results revealed a typical columnar structure and very smooth surface. Films with good optical transmittance, around 85%, within the visible wavelength region, and low resistivity in the range of 10-3 Ω?cm and high mobility of 4 cm2/Vs, were produced at low substrate temperature. On the other hand, we have studied the position of the p-n junction involved in an Au/In2O3:SnO2/ZnO:In(n)/c-Si(p)/Al structure by electron beam induced current. Current density-voltage characterizations in the dark and under illumination were also performed. The cell exhibits an efficiency of 6%.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0090026

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Effects of indium concentration on the properties of In-doped ZnO films: Applications to silicon wafer solar cells</title>
<author>
<name sortKey="Djessas, K" uniqKey="Djessas K">K. Djessas</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Université de Perpignan Via Domitia (UPVD), Laboratoire Procédés, Matériaux et Energie Solaire (PROMES-CNRS), TECNOSUD, Rambla de la thermodynamique</s1>
<s2>66100 Perpignan</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Languedoc-Roussillon</region>
<settlement type="city">Perpignan</settlement>
</placeName>
<orgName type="university">Université de Perpignan</orgName>
</affiliation>
</author>
<author>
<name sortKey="Bouchama, I" uniqKey="Bouchama I">I. Bouchama</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Université de Perpignan Via Domitia (UPVD), Laboratoire Procédés, Matériaux et Energie Solaire (PROMES-CNRS), TECNOSUD, Rambla de la thermodynamique</s1>
<s2>66100 Perpignan</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Languedoc-Roussillon</region>
<settlement type="city">Perpignan</settlement>
</placeName>
<orgName type="university">Université de Perpignan</orgName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Département d'Electronique, Faculté de Technologie, Université de Msila</s1>
<s2>28000</s2>
<s3>DZA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Algérie</country>
<wicri:noRegion>28000</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gauffier, J L" uniqKey="Gauffier J">J. L Gauffier</name>
<affiliation wicri:level="3">
<inist:fA14 i1="03">
<s1>Département de Physique, INSA de Toulouse, 135 Avenue de Rangueil</s1>
<s2>31077 Toulouse</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Midi-Pyrénées</region>
<settlement type="city">Toulouse</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ben Ayadi, Z" uniqKey="Ben Ayadi Z">Z. Ben Ayadi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Laboratoire de Physique des Matériaux et des Nanomatériaux appliquée à l'Environnement (LaPhyMNE), Université de Gabès, Faculté des Sciences de Gabès, Cité Erriadh Manara Zrig</s1>
<s2>6072 Gabès</s2>
<s3>TUN</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
<wicri:noRegion>6072 Gabès</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0090026</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0090026 INIST</idno>
<idno type="RBID">Pascal:14-0090026</idno>
<idno type="wicri:Area/Main/Corpus">000056</idno>
<idno type="wicri:Area/Main/Repository">000147</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorption spectrum</term>
<term>Atomic force microscopy</term>
<term>Cathodic sputtering</term>
<term>Columnar structure</term>
<term>Concentration effect</term>
<term>Cross section</term>
<term>Cross section (collision)</term>
<term>Current density</term>
<term>Doping</term>
<term>EBIC</term>
<term>Electrical conductivity</term>
<term>Hexagonal crystals</term>
<term>Illumination</term>
<term>Microstructure</term>
<term>Morphology</term>
<term>Nanoparticle</term>
<term>Nanopowder</term>
<term>Nanostructured materials</term>
<term>Physical vapor deposition</term>
<term>Polycrystal</term>
<term>Preferred orientation</term>
<term>Radiofrequency sputtering</term>
<term>Scanning electron microscopy</term>
<term>Silicon</term>
<term>Sol gel process</term>
<term>Solar cell</term>
<term>Sputter deposition</term>
<term>Surface conditions</term>
<term>Thin film</term>
<term>Voltage current curve</term>
<term>Wafer</term>
<term>p n junction</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Effet concentration</term>
<term>Dopage</term>
<term>Couche mince</term>
<term>Silicium</term>
<term>Pastille électronique</term>
<term>Cellule solaire</term>
<term>Pulvérisation haute fréquence</term>
<term>Dépôt physique phase vapeur</term>
<term>Dépôt pulvérisation</term>
<term>Pulvérisation cathodique</term>
<term>Nanopoudre</term>
<term>Nanoparticule</term>
<term>Nanomatériau</term>
<term>Procédé sol gel</term>
<term>Polycristal</term>
<term>Cristal hexagonal</term>
<term>Orientation préférentielle</term>
<term>Microscopie électronique balayage</term>
<term>Microscopie force atomique</term>
<term>Morphologie</term>
<term>Section efficace</term>
<term>Coupe transversale</term>
<term>Microstructure</term>
<term>Structure basaltique</term>
<term>Etat surface</term>
<term>Spectre absorption</term>
<term>Conductivité électrique</term>
<term>Jonction p n</term>
<term>EBIC</term>
<term>Caractéristique courant tension</term>
<term>Densité courant</term>
<term>Eclairement</term>
<term>Substrat indium</term>
<term>ZnO</term>
<term>Substrat verre</term>
<term>Substrat silicium</term>
<term>In2O3</term>
<term>8460J</term>
<term>8115C</term>
<term>8107</term>
<term>8115L</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In the present paper, high-quality In-doped ZnO (ZnO:In) thin films have been prepared by rf-magnetron sputtering on glass and p-type monocrystalline silicon substrates from an aerogel nanopowder target material. The nanoparticles with the [ln]/[Zn] ratio varying between 0.01 and 0.05 were synthesized by the sol-gel method and the structural properties have been analyzed. The effect of different dopant concentrations on the electrical, optical, structural and morphological properties of the films has been investigated. The obtained ZnO:In films at room temperature are polycrystalline with a hexagonal structure and a highly preferred orientation with the c-axis perpendicular to the substrate. Scanning electron microscopy and atomic force microscopy have been applied for a morphology characterization of the films' cross-section and surface. The results revealed a typical columnar structure and very smooth surface. Films with good optical transmittance, around 85%, within the visible wavelength region, and low resistivity in the range of 10
<sup>-3</sup>
Ω?cm and high mobility of 4 cm
<sup>2</sup>
/Vs, were produced at low substrate temperature. On the other hand, we have studied the position of the p-n junction involved in an Au/In
<sub>2</sub>
O
<sub>3</sub>
:SnO
<sub>2</sub>
/ZnO:In(n)/c-Si(p)/Al structure by electron beam induced current. Current density-voltage characterizations in the dark and under illumination were also performed. The cell exhibits an efficiency of 6%.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>555</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Effects of indium concentration on the properties of In-doped ZnO films: Applications to silicon wafer solar cells</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>International Symposia on Transparent Conductive Materials, October 2012</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>DJESSAS (K.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BOUCHAMA (I.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>GAUFFIER (J. L)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>BEN AYADI (Z.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>KIRIAKIDIS (George)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Université de Perpignan Via Domitia (UPVD), Laboratoire Procédés, Matériaux et Energie Solaire (PROMES-CNRS), TECNOSUD, Rambla de la thermodynamique</s1>
<s2>66100 Perpignan</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Département d'Electronique, Faculté de Technologie, Université de Msila</s1>
<s2>28000</s2>
<s3>DZA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Département de Physique, INSA de Toulouse, 135 Avenue de Rangueil</s1>
<s2>31077 Toulouse</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Laboratoire de Physique des Matériaux et des Nanomatériaux appliquée à l'Environnement (LaPhyMNE), Université de Gabès, Faculté des Sciences de Gabès, Cité Erriadh Manara Zrig</s1>
<s2>6072 Gabès</s2>
<s3>TUN</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Physics Dpt. Univ. of Crete, Voutes</s1>
<s2>Heraklion, Crete 70013</s2>
<s3>GRC</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA20>
<s1>28-32</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000505786660060</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>32 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0090026</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In the present paper, high-quality In-doped ZnO (ZnO:In) thin films have been prepared by rf-magnetron sputtering on glass and p-type monocrystalline silicon substrates from an aerogel nanopowder target material. The nanoparticles with the [ln]/[Zn] ratio varying between 0.01 and 0.05 were synthesized by the sol-gel method and the structural properties have been analyzed. The effect of different dopant concentrations on the electrical, optical, structural and morphological properties of the films has been investigated. The obtained ZnO:In films at room temperature are polycrystalline with a hexagonal structure and a highly preferred orientation with the c-axis perpendicular to the substrate. Scanning electron microscopy and atomic force microscopy have been applied for a morphology characterization of the films' cross-section and surface. The results revealed a typical columnar structure and very smooth surface. Films with good optical transmittance, around 85%, within the visible wavelength region, and low resistivity in the range of 10
<sup>-3</sup>
Ω?cm and high mobility of 4 cm
<sup>2</sup>
/Vs, were produced at low substrate temperature. On the other hand, we have studied the position of the p-n junction involved in an Au/In
<sub>2</sub>
O
<sub>3</sub>
:SnO
<sub>2</sub>
/ZnO:In(n)/c-Si(p)/Al structure by electron beam induced current. Current density-voltage characterizations in the dark and under illumination were also performed. The cell exhibits an efficiency of 6%.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A15C</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A07Z</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A15L</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Effet concentration</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Concentration effect</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Efecto concentración</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Doping</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Doping</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Silicium</s0>
<s2>NC</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Silicon</s0>
<s2>NC</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Silicio</s0>
<s2>NC</s2>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Pastille électronique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Wafer</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Pastilla electrónica</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Pulvérisation haute fréquence</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Radiofrequency sputtering</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Pulverización alta frecuencia</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Dépôt physique phase vapeur</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Physical vapor deposition</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Deposición física fase vapor</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Dépôt pulvérisation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Sputter deposition</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Pulvérisation cathodique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Cathodic sputtering</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Pulverización catódica</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Nanopoudre</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Nanopowder</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Nanopolvo</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Nanoparticule</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Nanoparticle</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Nanopartícula</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Procédé sol gel</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Sol gel process</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Procedimiento sol gel</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Polycristal</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Polycrystal</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Policristal</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Cristal hexagonal</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Hexagonal crystals</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Cristal hexagonal</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Orientation préférentielle</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Preferred orientation</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Orientación preferencial</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Microscopie électronique balayage</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Scanning electron microscopy</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Microscopía electrónica barrido</s0>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Microscopie force atomique</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Atomic force microscopy</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Microscopía fuerza atómica</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Morphologie</s0>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Morphology</s0>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Morfología</s0>
<s5>33</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Section efficace</s0>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Cross section (collision)</s0>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Sección eficaz</s0>
<s5>34</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Coupe transversale</s0>
<s5>35</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Cross section</s0>
<s5>35</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Corte transverso</s0>
<s5>35</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Microstructure</s0>
<s5>36</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Microstructure</s0>
<s5>36</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Microestructura</s0>
<s5>36</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Structure basaltique</s0>
<s5>37</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Columnar structure</s0>
<s5>37</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Estructura columnar</s0>
<s5>37</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Etat surface</s0>
<s5>38</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Surface conditions</s0>
<s5>38</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Estado superficie</s0>
<s5>38</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Spectre absorption</s0>
<s5>39</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Absorption spectrum</s0>
<s5>39</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Espectro de absorción</s0>
<s5>39</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Conductivité électrique</s0>
<s5>40</s5>
</fC03>
<fC03 i1="27" i2="X" l="ENG">
<s0>Electrical conductivity</s0>
<s5>40</s5>
</fC03>
<fC03 i1="27" i2="X" l="SPA">
<s0>Conductividad eléctrica</s0>
<s5>40</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>Jonction p n</s0>
<s5>41</s5>
</fC03>
<fC03 i1="28" i2="X" l="ENG">
<s0>p n junction</s0>
<s5>41</s5>
</fC03>
<fC03 i1="28" i2="X" l="SPA">
<s0>Unión p n</s0>
<s5>41</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>EBIC</s0>
<s5>42</s5>
</fC03>
<fC03 i1="29" i2="3" l="ENG">
<s0>EBIC</s0>
<s5>42</s5>
</fC03>
<fC03 i1="30" i2="X" l="FRE">
<s0>Caractéristique courant tension</s0>
<s5>43</s5>
</fC03>
<fC03 i1="30" i2="X" l="ENG">
<s0>Voltage current curve</s0>
<s5>43</s5>
</fC03>
<fC03 i1="30" i2="X" l="SPA">
<s0>Característica corriente tensión</s0>
<s5>43</s5>
</fC03>
<fC03 i1="31" i2="X" l="FRE">
<s0>Densité courant</s0>
<s5>44</s5>
</fC03>
<fC03 i1="31" i2="X" l="ENG">
<s0>Current density</s0>
<s5>44</s5>
</fC03>
<fC03 i1="31" i2="X" l="SPA">
<s0>Densidad corriente</s0>
<s5>44</s5>
</fC03>
<fC03 i1="32" i2="X" l="FRE">
<s0>Eclairement</s0>
<s5>45</s5>
</fC03>
<fC03 i1="32" i2="X" l="ENG">
<s0>Illumination</s0>
<s5>45</s5>
</fC03>
<fC03 i1="32" i2="X" l="SPA">
<s0>Alumbrado</s0>
<s5>45</s5>
</fC03>
<fC03 i1="33" i2="X" l="FRE">
<s0>Substrat indium</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="34" i2="X" l="FRE">
<s0>ZnO</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="35" i2="X" l="FRE">
<s0>Substrat verre</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="36" i2="X" l="FRE">
<s0>Substrat silicium</s0>
<s4>INC</s4>
<s5>49</s5>
</fC03>
<fC03 i1="37" i2="X" l="FRE">
<s0>In2O3</s0>
<s4>INC</s4>
<s5>50</s5>
</fC03>
<fC03 i1="38" i2="X" l="FRE">
<s0>8460J</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="39" i2="X" l="FRE">
<s0>8115C</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="40" i2="X" l="FRE">
<s0>8107</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="41" i2="X" l="FRE">
<s0>8115L</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>118</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>TCM2012 International Symposia on Transparent Conductive Materials</s1>
<s3>Hersonissos, Crete GRC</s3>
<s4>2012-10-25</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000147 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000147 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0090026
   |texte=   Effects of indium concentration on the properties of In-doped ZnO films: Applications to silicon wafer solar cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024